Distinct effects of Cu2+-binding on oligomerization of human and rabbit prion proteins.
نویسندگان
چکیده
The cellular prion protein (PrP(C)) is a kind of cell-surface Cu(2+)-binding glycoprotein. The oligomerization of PrP(C) is highly related to transmissible spongiform encephalopathies (TSEs). Cu(2+) plays a vital role in the oligomerization of PrP(C), and participates in the pathogenic process of TSE diseases. It is expected that Cu(2+)-binding has different effects on the oligomerization of TSE-sensitive human PrP(C) (HuPrP(C)) and TSE-resistant rabbit PrP(C) (RaPrP(C)). However, the details of the distinct effects remain unclear. In the present study, we measured the interactions of Cu(2+) with HuPrP(C) (91-230) and RaPrP(C) (91-228) by isothermal titration calorimetry, and compared the effects of Cu(2+)-binding on the oligomerization of both PrPs. The measured dissociation constants (Kd) of Cu(2+) were 11.1 ± 2.1 μM for HuPrP(C) and 21.1 ± 3.1 μM for RaPrP(C). Cu(2+)-binding promoted the oligomerization of HuPrP(C) more significantly than that of RaPrP(C). The far-ultraviolet circular dichroism spectroscopy experiments showed that Cu(2+)-binding induced more significant secondary structure change and increased more β-sheet content for HuPrP(C) compared with RaPrP(C). Moreover, the urea-induced unfolding transition experiments indicated that Cu(2+)-binding decreased the conformational stability of HuPrP(C) more distinctly than that of RaPrP(C). These results suggest that RaPrP(C) possesses a low susceptibility to Cu(2+), potentially weakening the risk of Cu(2+)-induced TSE diseases. Our work sheds light on the Cu(2+)-promoted oligomerization of PrP(C), and may be helpful for further understanding the TSE-resistance of rabbits.
منابع مشابه
A reassessment of copper(II) binding in the full-length prion protein.
It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazol...
متن کاملUnique Properties of the Rabbit Prion Protein Oligomer
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts th...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملIntroducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation
The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 47 10 شماره
صفحات -
تاریخ انتشار 2015